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Robust Detection of Singularities in Vector
Fields

Harsh Bhatia, Attila Gyulassy, Hao Wang, Peer-Timo Bremer, and Valerio Pascucci

Abstract Recent advances in computational science enable the creation of massive
datasets of ever increasing resolution and complexity. Dealing effectively with such
data requires new analysis techniques that are provably robust and that generate re-
producible results on any machine. In this context, combinatorial methods become
particularly attractive, as they are not sensitive to numerical instabilities or the de-
tails of a particular implementation. We introduce a robust method for detecting
singularities in vector fields. We establish, in combinatorial terms, necessary and
sufficient conditions for the existence of a critical point in a cell of a simplicial
mesh for a large class of interpolation functions. These conditions are entirely local
and lead to a provably consistent and practical algorithm to identify cells containing
singularities.

1 Introduction

Vector fields, which are either acquired from real-world experiments or generated
by computer simulations, are ubiquitous in scientific research. In recent years, the
increase in computational power coupled with the ability to simulate ever more com-
plex data has greatly increased the need for the automatic analysis of large-scale
vector fields. To handle the complexity and size of modern simulations, flexible,
multi-scale methods are needed. These techniques must be able to define features
at different levels of resolution, remove noise, and most importantly be computa-
tionally robust and consistent with the mathematical theory of vector fields. State-
of-the-art topological techniques fulfill many of these requirements by defining fea-
tures based on the global behavior of streamlines, which are the paths parallel to the
direction of flow of a fluid at a given instant, and by providing feature-based simpli-
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fication. For example, topological techniques for 2D vector fields use singularities
– points where the field is zero, such as sources, sinks, saddles, etc., together with
separatrices – the streamlines of a saddle, and limit cycles – the streamlines which
wrap back onto themselves, to decompose the vector field into regions of similar
flow behavior. Such decompositions are then used to analyze, visualize [21, 24],
simplify [29, 31], and compress [23] vector fields.

However, the majority of analysis and visualization techniques are based on the
direct application of the theory of smooth vector fields to sampled flows, ignoring
the fact that real numbers are replaced by finite-precision floating point arithmetic.
As a result, such numerical approaches may lead to the lack of consistency, meaning
that the fundamental laws of smooth mathematical theory may not be preserved in
practical applications. One type of inconsistency is the topological inconsistency,
e.g. intersection of streamlines, violation of the Poincaré-Hopf theorem, etc. In order
to obtain consistent results, the analysis must have numerical robustness, meaning
that it is independent of the underlying machine and/or floating point standards.
Numerical instabilities may produce topological structures which are incorrect or
inconsistent, hence questioning the fidelity of any subsequent analysis.

In several application areas, singularities of scalar fields have been shown to cor-
respond to features of interest. For example, Laney et al. [9] use the gravitational
potential on an envelope surface to indicate mixing structures in a Rayleigh-Taylor
simulation. Mascarenhas et al. [15] and Bremer et al. [2] use extrema in fields de-
rived from different combustion simulations to count regions of flame extinction and
strong burning, respectively. Robust singularity detection in vector fields promises
similar results for new applications such as turbulent flow analysis. As a result, the
focus of the current work is a robust technique for the detection of singularities,
which allows for consistent analysis.

Real-world data is most often available as discrete samples at the vertices of
a mesh, and a continuous function is recovered through interpolation of these
values. The particular case of piecewise-linear (PL) interpolants has been stud-
ied extensively in the context of identification and representation of singulari-
ties [8, 27, 29, 31]. The simplicity of linear interpolation makes PL vector fields
preferred in many applications. However, even with this simple interpolant, ro-
bust identification of singularities remains a challenge, as in the case of many non-

(a) (b) (c) (d)

Fig. 1 (a) When vB and vC are anti-parallel, a singularity exists on the edge BC. Numerical tech-
niques for identifying triangles containing critical points might test positive for (b) both ABC and
BDC, or (c) neither of them. (d) A practical implementation of our combinatorial technique uses
Simulation of Simplicity [5] to consistently determine the triangle containing the critical point.
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combinatorial geometric algorithms [22, 32]. For example, linear interpolation on
a simplicial domain may admit singularities on the boundaries of simplices – an
unstable configuration highly sensitive to numerical perturbation. Fig. 1 shows how
non-combinatorial methods may yield false positives or false negatives in these con-
figurations, leading to inconsistent analysis. Furthermore, a large number of fluid
simulations impose no-slip boundary conditions, meaning that the vectors at the
boundary are zero. These zero-vectors are the artifacts of the boundary/simulation
rather than singularities of the field. While it is possible to filter them out of the
critical point identification, it requires an explicit manual intervention, on top of a
priori knowledge of the boundary conditions.

In contrast to numerical approaches, some combinatorial alternatives [18, 19]
have been proposed to extract the topological structure from vector fields. Such
techniques typically convert the input data into a discrete form to obtain numerical
robustness, however, they are severely limited since it is not known how well do
these discrete techniques approximate the field.

To address these problems, new combinatorial techniques are required which
are guaranteed to detect all topological structures in a manner consistent with the
fundamental principles of vector fields. To this end, our contributions are:

• We prove necessary and sufficient conditions for the existence of singularities
within cells of a simplicial mesh for a broad class of interpolation functions.

• We show how to turn the necessary and sufficient conditions for the existence of
singularities into a combinatorial algorithmic approach.

2 Related Work

The topological skeleton of vector fields introduced by Helman and Hesselink [8] is
of special interest to many researchers. It consists of important features of the field
such as singularities, saddle separatrices, and limit cycles. Thus, the identification
and classification of these features is an integral part of the analysis and visualiza-
tion of vector fields. However, most of the early attempts at identification of sin-
gularities were based on numerical analysis. For example, isolated non-degenerate
singularities were identified using numerically integrated tangent curves (stream-
lines) and classified based on eigenvalue analysis [8]. Lavin et al. [10] and Batra
and Hesselink [1] extract singularities in a PL vector field V = Ax+ o by numeri-
cally solving the system Ax = 0 for each cell in a triangulated domain.

The detection of singularities has also been extended to higher-order singulari-
ties [20]. Tricoche et al. [27] analyze higher-order singularities in 2D by partitioning
the neighborhood of the singularity into sectors of different flow behavior. The topo-
logical analysis of higher order singularities provides a foundation for the design and
simplification of vector fields. Tricoche et al. [28] simplify the topology of vector
fields by merging clustered singularities within a convex polygon into higher order
singularities. These ideas have been extended to 3D by Weinkauf et al. [30, 31]. It
is more challenging to identify singularities in nonlinear vector fields. Li et al. [11]
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subdivide the simplicial mesh and compute the vector field by side-vertex interpola-
tion in polar coordinates. Singularities are then ensured to be located at the vertices.

In general, detection of singularities can be reformulated as solving nonlinear
systems of equations. The Newton-Raphson method and Broyden’s method can be
used to solve such systems. However, techniques aimed at solving generic nonlinear
systems are sensitive to perturbation and not guaranteed to find all the solutions.
For multivariate rational splines, Elber and Kim [6] apply the bisection method to
localize the potential regions containing roots. However, computational complexity
is a major concern of their method.

Consistency and robustness are particularly desired when computing the topolog-
ical skeleton of a vector field. A number of techniques have been proposed to extract
it in a stable and efficient manner. Such techniques range from deriving some prop-
erties from the original vector field, and basing the extraction on those properties;
to converting the vector field into a simpler combinatorial form which makes the
extraction more robust.

For example, Polthier and Preuß [17] detect singularities as the extrema of the
rotation-free and divergence-free potentials obtained from the discrete Helmholtz-
Hodge decomposition of the vector field. This method, however, only works for
piecewise-constant (PC) vector fields. Chen et al. propose the Entity Connection
Graph (ECG) [3] and the Morse Connection Graph (MCG) [4] as the topological
representation of PL vector fields. However, both ECG and MCG do not represent
higher order features of the field. On the other hand, Reininghaus et al. [18, 19] con-
struct a combinatorial vector field. While using their combinatorial fields enables the
extraction of a consistent topological structure, it is unclear how close the resulting
combinatorial field is to the original field. By comparison, this work proposes a ro-
bust and consistent combinatorial identification of singularities by working directly
on the input vector field.

In addition to the techniques discussed above, the notion of Poincaré index also
inspires combinatorial approaches to detect critical points. In this context, Garth et
al. [7] propose a method to detect and track singularities in time-dependent vector
fields by ensuring the Poincaré index is always preserved. Other techniques ensuring
the validity of Poincaré index include the works of Mann and Raywood [14] and
Trioche et al. [25, 26].

3 Foundations

Let D be a bounded, open subset of Rn. The closure and the boundary of D are
denoted by D̄ and ∂D respectively. A point x ∈ Rn is denoted as x = (x0, ...,xn−1),
and has an L-infinity norm |x|= max{|xi|; i = 0, · · · ,n−1}. C(D̄) denotes the class
of continuous functions φ ∈C(D̄), such that φ(x) : D̄→ Rn with the norm ||φ || =
supx∈D |φ(x)|. C1(D̄) is a subset of C(D̄) such that φ ∈C1(D̄) has continuous first-
order partial derivatives. Let p = φ(x) = (φ0(x), · · · ,φn−1(x)), then, the Jacobian
matrix J of φ is given as Jφ(x) = [∇φ0, · · · ,∇φn−1]

T . For φ ∈ C1(D̄), p = φ(x)
is called a degenerate value of φ if there exists x ∈ D̄ such that det(Jφ(x)) = 0,
otherwise p is a regular value of φ .
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3.1 Degree Theory

The proposed critical point detection technique requires results relating the exis-
tence of certain values in the image of a function to the span of the image. We are
interested in a particular class of functions φ : Rn→ Rn for which the pre-image of
a non-degenerate value p is a finite set of points. Therefore, we utilize the Brouwer
degree as a tool for determining whether or not a particular value exists inside the
image of a simplex. The following definitions have been made by Lloyd [12].

For a bounded, open subset D ⊂ Rn, and a continuous function φ ∈ C(D̄), the
Brouwer degree of φ in D with respect to the value p, where p /∈ φ(∂D) is defined
as follows:

Definition 1 (Brouwer Degree for C1(D̄) and regular value p). If φ ∈C1(D̄) and
p is a regular value of φ , then

deg(φ ,D,p) = ∑
x∈φ−1(p)

sign(det(Jφ(x))).

An intuition behind the concept of Brouwer degree is illustrated in Fig. 2(a). It is
essentially the count of the net crossings of p by the image of D̄ under φ . The above
definition is limited to regular values p only. Not all values in a sampled function
reconstructed through interpolation are regular, so our definition must encompass
degenerate values as well.

Definition 2 (Brouwer Degree for C1(D̄) and degenerate value p). If φ ∈C1(D̄)
and p is a degenerate value of φ , then

deg(φ ,D,p) = deg(φ ,D,p1)

where p1 is any regular value such that |p−p1|< dist(p,φ(∂D)).

The existence of a non-degenerate value in every neighborhood of p is guaranteed by
Sard’s Theorem [12]. Similarly, we would like to extend this definition to functions
that are continuous, but not necessarily in C1(D̄).

Definition 3 (Brouwer Degree for C(D̄)). If φ ∈C(D̄), then

deg(φ ,D,p) = deg(φ1,D,p)

where φ1 is any function in C1(D̄) such that for any x ∈ D̄, |φ(x)− φ1(x)| <
dist(p,φ(∂D)).

Basically, we can find a function φ1 that is “close” to φ and has continuous deriva-
tives, and define the Brouwer degree with respect to this function.

Using the Brouwer degree, the net number of crossings of p by the image of D̄
can be counted. If this number is nonzero, then there exists at least one x such that
φ(x) = p. This leads to the following theorems:
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Fig. 2 The Brouwer degree counts the net number of times p is crossed by the image of D̄ under
φ . The “positive” (det(Jφ(x))> 0) and “negative” (det(Jφ(x))< 0) crossings are shown as solid
and hollow dots respectively. (a) For the open and bounded sets D1 and D2, the Brouwer degree
of φ(x) with respect to the value p is −1 and 0 respectively. (b) When the sets Di are symmetric,
Theorem 2 guarantees that if the values on the boundary have different signs, then the Brouwer
degree with respect to 0 is odd, as is the case for D2 and D3.

Theorem 1 (Kronecker’s Existence Theorem). If deg(φ ,D,p) 6= 0, then the equa-
tion φ(x) = p has at least one solution in D.

Theorem 2. Let D be a bounded, open, symmetric subset of Rn containing the ori-
gin. If φ : D̄→ Rn is continuous, 0 /∈ φ(∂D), and for all x ∈ ∂D

φ(x)
|φ(x)|

6= φ(−x)
|φ(−x)|

then deg(φ ,D,0) is an odd number [12].

Intuitively, Theorem 2 ensures that φ crosses φ(x) = 0 at least once if no antipodal
vectors of φ are parallel, as can be seen in Fig. 2(b).

3.2 Sampled Vector Fields

The proposed technique addresses the detection of singularities for interpolated vec-
tor fields, where vectors are defined on the vertices of a simplicial complex and then
interpolated on the interior of simplices.

A k-simplex, Sk, is the convex hull of k+ 1 affinely-independent vertices, such
that Sk = {xi},xi ∈ Rn, 0 ≤ i ≤ k ≤ n. A simplex Sl is called a l-face of Sk for
l ≤ k if Sl ⊆ Sk, and a proper l−face of Sk for l < k if Sl ⊂ Sk. A proper k−1-face
Sk−1

j of Sk is called its facet if Sk−1
j = {xi},xi ⊂ Sk, 0 ≤ i ≤ k ≤ n, i 6= j, i.e. it is

constructed by removing vertex x j from Sk. If Sl is a (proper) face of Sk, then Sk is
called a (proper) coface of Sl . S̊ denotes the interior of a simplex, and is given by
removing all the proper faces from a simplex. A simplicial complex, denoted M ,
is a collection of simplices such that Si ∈M implies that all the faces of Si are in
M , and the intersection of any two simplices is a face of both or empty. The local
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neighborhood of a vertex x j can be defined in terms of its star S(x j) which consists
of all cofaces of x j. The star is not closed under taking faces.

A sampled vector field is given as a simplicial complex M with m+ 1 vertices
{x0, . . . ,xm}, xi ∈Rn and vector values {v0, . . . ,vm},vi ∈Rn defined at the vertices.
The vector field is called generic when

1. ||vi||> 0,∀i ∈ {0, . . . ,m},
2. The vectors {vi0 , . . . ,vid} at vertices {xi0 , . . . ,xid} of the d-simplex Si ∈M are

affinely independent.

Note that not every vector field sampled from observations or simulations is generic,
since the sampled vector magnitudes can be zero violating condition 1. While we
assume a generic vector field in the following discussion, Section 4.2 discusses how
this assumption can be relaxed.

In this chapter, we focus on a class of interpolating vector valued functions which
can be expressed as

V(x) = ∑
S̊i∈M

Vi(x), such that, Vi(x) = ∑
x j∈Si

w j(x)v j

where, the weight functions w j(x) defined for vertices x j are continuous, non-
negative, and local, meaning w j(x)> 0,∀x ∈ S(x j), and w j(x) = 0,∀x /∈ S(x j).

Following the definition of the weight functions w j(x), it is clear that for the sim-
plex Si = {xi0 , . . . ,xid}, w j(x)> 0 only for j ∈ {i0, . . . , id}. Furthermore, w j(x)→ 0
as x→ S j, where S j is a facet of Si. Since Vi are defined only on the interior of sim-
plices, V is C0 continuous across the faces of the simplices. It is simple to confirm
that PL interpolation falls into this class of functions. Also, a variant of Radial Basis
Function (RBF) interpolation falls into this class where the weights smoothly fall to
zero at the boundary of the vertex stars.

4 Critical Point Detection

This section discusses how Brouwer degree theory can be used to robustly detect
singularities in the class of interpolated vector fields defined in Section 3.2.

4.1 Main Result

Using the concepts introduced above we will show that a simplex S contains a crit-
ical point if and only if the origin, 0, lies in the convex hull of the vectors at the
simplex’s vertices. To connect the results of Section 3 with vector fields on sim-
plices we define a one-to-one mapping from a simplex to an enclosing ball.

Let S = {x0, . . . ,xm},m ≤ n,xi ∈ Rn be an m-simplex of M . We can assume,
without loss of generality, that the origin 0 is in the interior of S. Let B be the unit
ball. Let x(6= 0) be a point in the interior of S, and x′ be the intersection of the ray
from the origin through x with the boundary of S. Then, we can define a mapping
B : S→ B as B(x) = x/||x′|| for x 6= 0, and B(0) = 0. (see Fig. 3)
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S

0

B

B(0)B

Fig. 3 The mapping B : S→ B in R2. The origin 0 is contained in the interior of S.

Assuming non-degenerate simplices, B is continuous and invertible, with 0 as its
fixed point, and we can use it to map V from any simplex in M onto an enclosing
ball B with center in the interior. We now show that if 0 is contained in the convex
hull of V, the Brouwer degree of this simplex w.r.t. 0 is odd.

Lemma 1. Let S= {x0, . . . ,xn},xi ∈Rn be a simplex of M containing the origin 0,
and V be a vector field as defined above. If 0 lies in the convex hull of (v0, . . . ,vn),
then deg(V,S,0) is odd.

Proof. Let B be the unit ball of S as defined above. Furthermore, define V̄ : B→Rn,
as V̄(x) = V(B−1(x)). Assume, there exists an xb ∈ ∂B such that

V̄(xb) = a · V̄(−xb), with a > 0.

The following argumentation proves that this assumption leads to a contradiction.
Due to continuity of B, it can not map adjacent points of S to antipodal points

of B, therefore it follows that there exist two different facets of S, namely S j and
Sk, containing parallel vectors. Let x ∈ S j and y ∈ Sk, such that for some a > 0,
∑i6= j wi(x)vi = a ·∑i6=k wi(y)vi, j 6= k .

∑
i6= j

wi(x)vi−a ·∑
i6=k

wi(y)vi = 0

∑
i6= j,k

(wi(x)−awi(y))vi−aw j(y)v j +wk(x)vk = 0

Also, since 0 lies in the convex hull of (v0, . . . ,vn), we can find ci such that
∑

n
i=0 civi = 0, and ci ≥ 0, ∀i, and ∑

n
i=0 ci = 1. Now, since (v0, . . . ,vn) form an affine

combination, ∑λivi = ∑ µivi⇔ λi = µi ∀i. This implies that

ci = wi(x)−awi(y) ∀i 6= j,k

ck = wk(x)
c j =−aw j(y).

However, since all ci’s, wi’s, and a are positive, the third condition gives a contra-
diction. Hence, a point xb with V̄(xb) = a · V̄(−xb) does not exist. By Theorem 2,
deg(V̄,B,0), and hence deg(V,S,0) is odd. ut
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Combining all the results presented above allows us to prove the main result:

Theorem 3. Let S= {x0, . . . ,xn},xi ∈Rn be a simplex of M and V be a vector field
on M as defined above. Then S contains a critical point if and only if 0 is in the
interior of the convex hull of v0, . . . ,vn.

Proof. If 0 is in the interior of the convex hull of v0, . . . ,vn, then the Brouwer degree
of the origin inside S is odd (Lemma 1). By Theorem 1, there exists a critical point
in S.

If a critical point is located at x in S then

v(x) =
n

∑
i=0

wi(x)vi = 0

⇒
n

∑
i=0

wi(x)
∑

n
j=0 w j(x)

vi =
n

∑
i=0

ci(x)vi = 0.

where, ci(x) = wi(x)
∑

n
j=0 w j(x)

. Since all the weights wi’s are non-negative, we have 0 ≤
ci ≤ 1, ∀i, and ∑

n
i=0 ci = 1. Hence, 0 is in the interior of the convex hull of vi’s. ut

The practical implication of this result is that, to identify a simplex containing a
critical point, one does not need to know the actual interpolation function as long as
it satisfies the properties discussed in Section 3.2. Furthermore, it suffices to check
the convex hull of the vectors at the vertices to find singularities. Thus, detection of
singularities for any interpolation scheme is reduced to a simpler PL test which can
be performed using the Simulation of Simplicity (SoS) [5] as will be discussed later.

Notice that if the space is sampled too sparsely, or a more complex interpolation
scheme is used, multiple critical points may appear within a single simplex. In this
case, our technique will assume the simplest possible interpretation of the vectors at
the vertices. In particular, if the singularities in the same simplex cancel each other,
then no singularities will be reported, since the vector field on the boundary can be
completed with an entirely regular vector field in its interior.

The topological consistency of our technique can be proved as below.

Corollary 1. Using Theorem 3 always leads to topologically consistent critical
point detection for V defined on M as above.

Proof. Given a closed orientable n-dimensional manifold M, we consider its corre-
sponding simplicial complex M . We know that any smooth vector field on M must
have an even number of critical points. Therefore, to demonstrate consistency, we
show that our technique detects an even number of critical points for the sampled
vector field V on M .

We study M in function (vector) space by considering the simplicial complex
defined by the vectors of V, and denote it as Mv. Note that an orientable and closed
M implies an orientable and closed Mv. There exists an embedding of Mv in Rn+1

where the n+ 1th component is chosen at random. We trace a line ` through the
origin and orthogonal to the Rn subspace. Note that ` corresponds to zero vector
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0. By Theorem 3, singularities are not allowed to exist on the faces of simplices
of M . Since Mv is closed, there exist an even number of transveral intersections
between Mv and `. Consequently, each intersection corresponds to a single simplex
containing a critical point at its interior, leading to an even number of simplices with
critical points; therefore, even number of critical points. ut

4.2 Robust Computation using the Simulation of Simplicity (SoS)

Detection of critical point in a simplex S requires a robust way of determining
whether the zero vector is contained in the convex combination of the vectors of S.
Let Sv denote the simplex created by the vectors of V at the vertices of S, then de-
tection of critical point simply translates into testing whether the origin 0 lies inside
Sv. This point-in-simplex test can be further reduced to computing the orientation
of the test point with respect to the facets of the simplex. This section describes how
this procedure can be performed in a combinatorial manner.

The orientation of n+ 1 points in n-dimensional space can be computed as the
sign of the following determinant

det(x0, . . . ,xn) =

 x0,0 . . . x0,n−1 1
...

. . .
... 1

xn,0 . . . xn,n−1 1

 .

The determinant is zero if all the points lie on a common hyperplane. For exam-
ple, in 2D, the orientation of three points is counter-clockwise (positive) if the sign
of the corresponding determinant is positive, or clockwise (negative) if the sign is
negative. The degenerate case where the three points are collinear leads to the deter-
minant being zero. Recall that the sign of a determinant switches if an odd number
of row-exchanges are carried out, therefore, care must be taken with respect to the
order of the points. Algorithm 1 [5] calculates the orientation of a set of points, by
first assigning (sorting) them a consistent order, and then computing the sign of the
determinant.

Algorithm 1 Positiven(x j0 , . . . ,x jn)

s← Sort ( j0, . . . , jn): s is the number of swaps needed to sort
d← Sign det(x j0 , . . . ,x jn )
if odd(s) then

d←−d
end if
return d

As discussed in Section 3.2, the determinant is always non-zero for generic vec-
tors. To impose genericity, we use the Simulation of Simplicity (SoS) [5], which is
a general-purpose programming technique to handle degeneracies in the data. The
SoS applies a symbolic perturbation to the data preventing any of the determinants
from becoming 0, thus providing a non-degenerate point-in-simplex test. Intuitively,
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if a point lies on a shared coface of two or more simplices, the SoS makes a consis-
tent choice by enforcing it to be contained inside one of them, while it lies outside
the rest of them.

Numerical robustness is achieved by first converting the data to a fixed preci-
sion, and then representing the values as long integers in computing the determinant
(as used in the Geomdir library [16]), hence removing the need for floating-point
arithmetic. As a result, the determinant computation is both robust and combinato-
rial. We point out that Algorithm 1 is the fundamental step in the process of critical
point detection, and helps achieve robustness by replacing numerical data (vector
components) with combinatorial information (orientation).

Using Algorithm 1 for orientation computation, Algorithm 2 [5] performs the
point-in-simplex test. Given a simplex S = {x0, . . . ,xn},xi ∈ Rn, the first step is to
determine the orientation of the facets of the simplex. Then, one by one each facet
is replaced by the given test point and the corresponding orientation is computed. If
all such combinations have the same orientation, then the test point lies inside the
simplex, otherwise not.

Algorithm 2 Point x in Simplex S= {x0, . . . ,xn},xi ∈ Rn

s← Positiven(x0, . . . ,xn)
for i = 0 to n do

(x′0, . . . ,x
′
n)← (x0, . . . ,xn)

x′i← x
si← Positiven(x′0, . . . ,x

′
n)

if s 6= si then
return false

end if
end for
return true

5 Experimental Results

We apply our technique to identify critical points in PL vector fields on a triangu-
lated domain. For each simplex in the domain, we test for origin to lie inside the
simplex created by the vectors at its vertices using SoS, and use the Geomdir li-
brary [16] to compute the determinants robustly. We compare our method with the
numerical method to detect critical points [10], which solves a linear system for
every simplex in the domain.

To evaluate the two techniques, we create a synthetic 2D vector fields with known
critical points, two of which are carefully placed on an edge and a vertex. In Fig. 4,
we see that for both of these critical points, the numerical technique determined
that all the triangles sharing the corresponding edge and vertex respectively, contain
critical points – a topologically inconsistent result. Our proposed method using SoS,
however, makes a choice by representing each critical point as one triangle only,
which matches the known ground truth.

To demonstrate dimension-independence of our technique, we test it on the
Lorenz system (A 3D vector field V(x,y,z) = (σ(y− x), x(ρ− z)− y, xy−β z))
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Fig. 4 Detection of singularities in 2D synthetic vector field. The top row shows the triangles where
critical points were detected, numerically. Zoom-in views show that multiple triangles test positive
for two critical points lying on the boundaries of triangles. Bottom row shows the consistent results
detected using our algorithm where only one triangle per critical point tested positive.

with parameters σ = 10, β = 8/3, and ρ = 1/2. For ρ < 1, we expect the system to
contain a singularity at the origin. Figure 5 shows the comparison where our tech-
nique selects a single tetrahedron touching the origin to represent the singularity.
The numerical technique, on the other hand, detects all the 20 tetrahedra touching
the origins as critical.

To compare the running times of the two methods, we test them on the highest
slice of a 3D simulation of global ocean eddies [13], shown in Fig. 6. The ocean
surface is represented by 10,633,760 triangles. The numerical method [10] takes
≈ 89.22 seconds to detect 24,552 critical points. On the other hand, our method
takes only≈ 6.85 seconds to detect the same critical points, and thus, is significantly
faster.

Fig. 5 Detection of singularities in the Lorenz system. Numerical method (left) detects 20 tets
touching the origin, while our technique (right) detects a single tet to represent the singularity.
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Fig. 6 Detection of singulari-
ties in a 2D slice of simulation
of global oceanic eddies [13].
The data contains 24,552
triangles with critical points,
each represented by a black
dot.

6 Conclusions and Future Work

In this chapter, we provide a necessary and sufficient condition for the existence
of critical points in a simplex for a broad class of interpolated vector fields. Our
existence condition for critical points allows us to develop a robust method to detect
critical points in n-dimensions. Furthermore, when given finite precision values,
the technique is guaranteed to use finite precision, and therefore the result can be
computed exactly in a combinatorial manner. In the future, we wish to investigate
further the class of interpolation functions we showed this result for, identifying
which other interpolation techniques fall into this class. We also wish to extend this
work to include classification of critical points.
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